

Sciences Appliquées TD: transfert thermique

LE REFUGE DU GOÛTER, UN PROJET H.Q.E.

Le refuge du Goûter, situé à proximité du Mont Blanc à 3835 m d'altitude, est l'un des plus hauts refuges de montagne d'Europe. Sa construction répond à des normes Haute Qualité Environnementale (H.Q.E).

Cet exercice porte sur les performances énergétiques du bâtiment et sur les choix des matériaux par les concepteurs du projet afin de rendre cet habitat « passif ».

UN DES PLUS HAUTS CHANTIERS D'EUROPE

D'architecture ovoïde, conçu pour s'intégrer sur le plan technique et esthétique aux contraintes d'un environnement difficile, le refuge du Goûter préfigure une nouvelle génération de bâtiments. Ce chantier est un véritable défi architectural et technique puisqu'il s'agit de construire un bâtiment avec une structure en bois, sur quatre étages, avec un revêtement extérieur en inox et d'utiliser efficacement les technologies innovantes.

Mais c'est aussi un défi humain pour les ouvriers qui travaillent sur ce chantier hors norme, situé à 3835 m avec des contraintes climatiques. Les rafales de vent peuvent dépasser 250 km.h⁻¹. Les températures peuvent chuter à - 35°C en hiver et -10°C en plein été.

Tout a été mis en œuvre pour faire de ce chantier un projet bas carbone, « pilote » sur le plan environnemental :

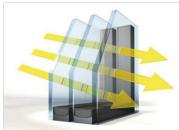
- structure en bois local des Alpes françaises (épicéa, sapin blanc et mélèze), majoritairement issu des forêts de Saint-Gervais (vallée proche du site) :
- modules bois fabriqués dans la vallée et transportés par hélicoptère. Toute la structure a été pensée comme un « jeu de construction » géant pouvant être assemblé rapidement sur site. La masse maximale des éléments héliportés sur site est de 550 kg. La fabrication en atelier est prévue pour réduire les temps de pose et faciliter la tâche aux ouvriers montant la structure;
- recours aux énergies renouvelables (solaire, photovoltaïque, biomasse) et mise en place de technologies innovantes (gestion de l'électricité à distance, cogénération, fondoir à neige, traitement des eaux usées...).

Extrait du dossier de presse du site «le refuge du Goûter» juillet – Août 2012

Un modèle de fenêtre développé spécifiquement pour le refuge du Goûter

Pour répondre aux conditions climatiques extrêmes liées à cette altitude, un modèle de fenêtre très performant a été réalisé. Elle est constituée d'un triple vitrage et d'un survitrage spécifique. Pour l'isolation entre chaque vitre, l'argon a été choisi comme gaz plutôt que l'air, augmentant ainsi la résistance thermique de la fenêtre.

- 1. Les échanges thermiques s'effectuent selon trois modes. Associer, à chacune des définitions données cidessous, le nom du mode de transfert thermique correspondant :
- définition 1 : transfert d'énergie par ondes électromagnétiques, ne nécessitant pas de milieu matériel ;
- définition 2 : transfert d'énergie dans un milieu matériel, sans déplacement de matière, sous l'influence d'une différence de température ;
- définition 3 : transfert d'énergie associé à des mouvements de matière, généralement au sein d'un gaz ou d'un liquide.


A.CHELLE - BTS ET 2021-2022

- 2. Calculer, pour une surface de 1.0 m^2 , la résistance thermique totale R_{th1} du triple vitrage d'une fenêtre du refuge, sachant que la résistance thermique totale du triple vitrage est la somme des résistances thermiques de chaque matériau constituant le triple vitrage.
- 3. Dans le cas d'un triple vitrage utilisant l'air, et pour une même surface de 1,0 m², la résistance thermique de la fenêtre vaut R_{th2} = 1,1 K.W⁻¹. Évaluer la variation de la résistance thermique suite à la substitution de l'air par l'argon. Comparer avec un simple vitrage de 12mm d'épaisseur.
- 4. Augmenter (doubler) l'épaisseur du verre aurait-t-il une grande influence sur les performances thermiques du vitrage ? Justifier votre réponse. Quel est l'isolant thermique ?
- 5. On maintient une température de 15°C à l'intérieur, calculer le flux thermique Φ perdu par l'ensemble des vitrages.

Données: 120m² de surface vitrée

Informations sur les fenêtres du refuge

Matériau	Conductivité thermique λ (W.m ⁻¹ .K ⁻¹)	
air	0,026	
argon	0,017	
verre de vitre	1,2	

Fenêtre à triple vitrage

Composition du triple vitrage: - 2 lames d'argon de 14 mm d'épaisseur chacune;

- 3 vitres de 4 mm d'épaisseur chacune.

Apport théorique

La résistance thermique R_{th} (en K.W⁻¹) d'une paroi a pour expression :

$$R_{th} = \frac{e}{\lambda . S}$$

e: épaisseur de la paroi en m; λ conductivité thermique en W.m⁻¹.K⁻¹;

S: surface de la paroi en m².

Caractéristiques de quelques matériaux

Matériau	Conductivité thermique λ (W.m ⁻¹ .K ⁻¹)	Masse volumique ǫ (x10³ kg.m³)
acier inoxydable	26	7,8
béton plein	1,8	2,3
brique	0,84	2,1
pierre	3,5	2,7
sapin/épicéa	0,13	0,45
polystyrène	0,036	0,034
laine de verre	0,032	0,025
fibre de bois	0,038	0,2