

Travail à faire sur chaque montage.

Le réseau HTA est direct.

- 1. Calculer l'indice horaire.
- Écrire la relation entre les courants ligne bt i_x et i_n .

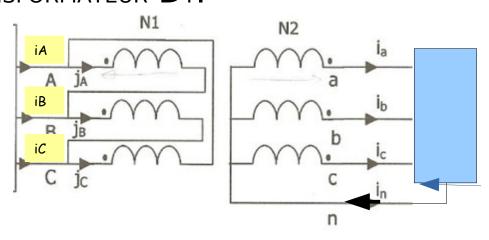
On rappelle que i_n , courant dans le neutre, est appelé « composante homopolaire ».

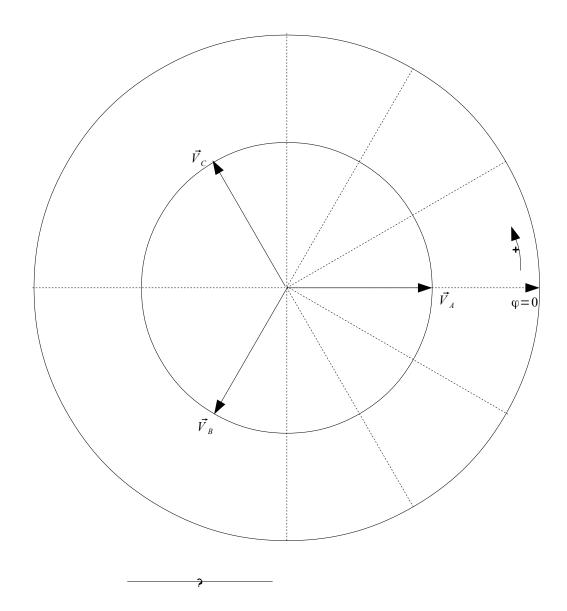
- Écrire pour chaque phase A, B, C la relation entre les courants de bobinage HT j_X et les courants bt i_x .
- Écrire pour chaque phase A, B, C la relation entre les courants ligne HT i_X et les courants de bobinage HT j_X .
- En déduire la relation entre les les courants ligne HT i_X et les courants ligne bt i_X .

La charge alimentée par le transformateur est résistive mais déséquilibrée, aussi on a $I_a = 2I_b = 2I_c$

- Tracer les courants lignes bt i_x sur le diagramme de Fresnel.
- 7. Tracer sur le diagramme de Fresnel le courant homopolaire bt i_n .
- 8. Tracer les courants bobinages HT \dot{J}_X sur le diagramme de Fresnel.
- Tracer les courants lignes HT i_X sur le diagramme de Fresnel.
- 10. Tracer la composante homopolaire HT $i_N = i_A + i_B + i_C$.

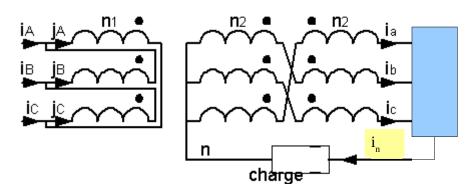
Conclusion:

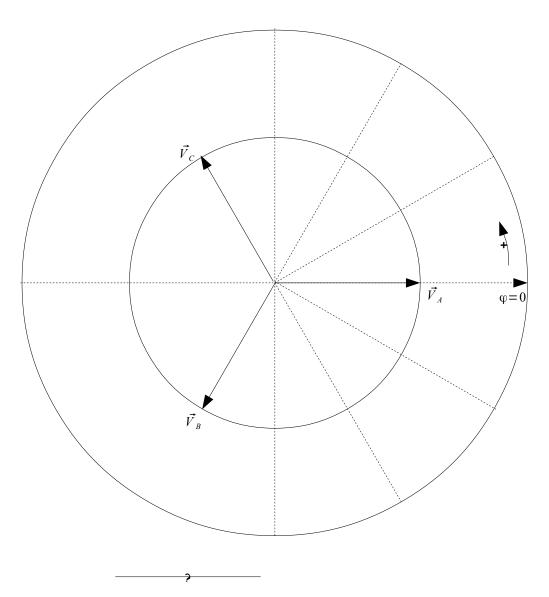

Question1- analyser la répartition d'un déséquilibre de charge sur le réseau HT,


Question2- analyser la transmission de la composante homopolaire.

S.DERAMOND - BTS ET 1/3

Transformateur Dy.





TD3_influence_couplageTTrip S.DERAMOND - BTS ET 2/3

TRANSFORMATEUR Dz.

TD3_influence_couplageTTrip S.DERAMOND - BTS ET 3/3