

Système de stockage déstockage TP 1.7

Objectif de la séance:

- > Prendre en main le système de stockage / déstockage et le faire fonctionner dans ces différents modes.
- > Relever la consigne de vitesse générée sur l axe X et interpréter ces mesures.

Documents ressources :

Documentation technique sur le transgerbeur (système de stockage / déstockage).

Matériels :

- > Système transgerbeur + poste informatique équipé du logiciel automate PL7 PRO version 4.2.
- > Appareils de mesures : oscilloscope numérique Tektronix ou équivalent, sonde de courant.

Compétences visées

C2	Extraire les informations nécessaires à la réalisation des tâches	U51
C16	Appliquer un protocole pour mettre en service un ouvrage, une installation, un équipement électrique	U62
C13	Mesurer les grandeurs caractéristiques d'un ouvrage, d'une installation, d'un équipement électrique	U51
C17	Réaliser un diagnostic de performance y compris énergétique, de sécurité, d'un ouvrage, d'une installation, d'un équipement électrique	U51
C18	Réaliser des opérations de maintenance sur un ouvrage, une installation, un équipement électrique	U51

Les compétences retenues pour ce sujet sont les cométences C2, C16 et C13.

I / . Prise en main du transgerbeur.

- I / 1. Lire les pages 1 à 23 du dossier transgerbeur (système de stockage / déstockage) et rédiger en quelques phrases $\underline{\text{simples}}$ le rôle de ce système, son principe de fonctionnement et ses principaux constituants. Vous pourrez vous aider du schéma fonctionnel de la page 11.
- I / 2. Faire fonctionner le transgerbeur dans les différents modes de fonctionnement.
 - Marche manuelle sur X (X+ ou X-), sur Y (Y+ ou Y-) et sur Z (Z+ ou Z-)
 - > Réinitialisation automatique
 - > Production normale dans le cas d'un stockage de caisse
 - > Production normale dans le cas d'un déstockage

Pour le mode manuel et pour le mode automatique rédiger en quelques phrases la succession des ordres à transmettre par l'opérateur sur l'écran de communication.

- I / 3. Que se passe t il si un capteur de fin de course est atteint sur l axe X Comment peut-on remettre le système dans sa zone de travail normal
- I / 4. Que se passe t il si un capteur de fin de course est atteint sur l axe Z Comment peut-on remettre le système dans sa zone de travail normal

II /. Relevé oscilloscopique.

II / 1. Relevé de la consigne de vitesse sur l axe X

Brancher l'oscilloscope sur les douilles de sécurité CONSIGNE AXE X placées en face avant de l'armoire.

- a) Régler l'oscilloscope afin de visualiser sur l'écran la tension de consigne de l'axe X pour un déplacement complet (cycle aller et retour) en mode automatique (stockage ou destcockage sur la caisse 35) Enregistrer la courbe obtenue et tracer sur votre feuille l allure de cette courbe En déduire :
 - le temps de cycle complet pour un déplacement le plus éloigné de la desserte
 - la tension de consigne nominale pour le cycle aller
 - la tension de consigne nominale pour le cycle retour.
- b) Régler l'oscilloscope afin de visualiser sur l'écran la tension de consigne de l'axe X pour un déplacement sur le <u>cycle aller</u> uniquement en mode automatique (stockage ou destcockage sur la caisse 35) Enregistrer la courbe obtenue et tracer sur votre feuille l allure de cette courbe En déduire :
 - le temps d accélération
 - le temps de décélération
- c) Régler l'oscilloscope afin de visualiser sur l'écran la <u>montée en vitesse</u>.
 Tracer sur votre feuille l allure de cette courbe.
 En déduire les caractéristiques des 'marches d'escalier '(largeur de marche et hauteur)

II / 2. Relevé du courant dans le moteur de l axe Z

En plus du matériel précédent on utilisera une sonde courant.

 \succ Régler l'oscilloscope afin de visualiser sur l'écran le courant dans le moteur de l axe Z pour un déplacement manuel en montée puis en descente

Relevé le courant dans les deux cas et comparer les valeurs obtenus Conclure